
DOI: 10.4018/IJITSA.342084

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Logistics Distribution Route Optimization
With Time Windows Based on Multi-
Agent Deep Reinforcement Learning
Fahong Yu, Shanwei Institute of Technology, China*

 https://orcid.org/0000-0002-9342-6419

Meijia Chen, Shanwei Institute of Technology, China

Xiaoyun Xia, Jiaxing University, China

Dongping Zhu, Shanwei Institute of Technology, China

Qiang Peng, Shanwei Institute of Technology, China

Kuibiao Deng, Shanwei Institute of Technology, China

ABSTRACT

Multi-depot vehicle routing problem with time windows (MDVRPTW) is a valuable practical issue
in urban logistics. However, heuristic methods may fail to generate high-quality solutions for massive
problems instantly. Thus, this article presents a novel reinforcement learning algorithm integrated
with a multi-head attention mechanism and a local search strategy to solve the problem efficiently.
The routing optimization was regarded as a vehicle tour generation process and an encoder-decoder
was used to generate routes for vehicles departing from different depots iteratively. A multi-head
attention strategy was employed for mining complex spatiotemporal correlations within time windows
in the encoder. Then, a decoder with multi-agent was designed to generate solutions by optimizing
reward and observing transition state. Meanwhile, a local search strategy was employed to improve the
quality of solutions. The experiments results demonstrate that the proposed method can significantly
outperform traditional methods in effectiveness and robustness.

Keywords
Deep Reinforcement Learning, Logistics Distribution, Multi-Depot, Route Optimization

INTRODUCTION

With the rapid development of the transportation industry, more stringent requirements on vehicle
routing have become an emerging issue in transportation service. This challenges vehicle management
intelligence. Vehicle Routing Problems (VRPs) have been a subject of extensive research and attention

https://orcid.org/0000-0002-9342-6419

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

2

by scholars worldwide since its inception. To generalize the problem to a wider range of use cases,
VRPs have been extended to include more complicated scenarios for a real-life environment. The
fixed number of vehicles in the fleet and tighter time windows for customer demand have transformed
traditional VRPs into vehicle routing problem with time windows (VRPTW). The problem can be
characterized as the multi-depot vehicle routing problem with time windows (MDVRPTW). As a
much simpler case, the multi-depot vehicle routing problem (MDVRP) itself is NP-hard, implying
that it is unrealistic to generate optimal solution for a large-scale problem unless P = NP (Braekers
& Nieuwenhuyse, 2020).

For such extensively complicated problems, heuristic methods are conventionally considered
as the viable solution tools. However, the logistics industry has been faced with a new challenge for
serving massive amounts of requests instantly in the past few decades. Although many researchers
propose diverse heuristics to solve the VRPs, it is still a challenging problem to provide reliable
solutions for city scale problems within an acceptable amount of time. Artificial intelligence methods
have been gradually evolving to tackle vehicle routing problems. Deep reinforcement learning (DRL)
has become increasingly prominent in solving complex sequence decision problems, such as dynamic
routing choice, automated vehicle control, and emergency evacuation. DRL is the fusion between
reinforcement learning (RL) and deep learning (DL) which can addresses the issue of extreme large
spaces with the action and state effectively. Subsequently, several studies attempted to solve the VRPs
using DRL, with the encoder-decoder architecture being a popular choice for neural network design.
Among these studies, an improved pointer network by simplifying the recurrent neural network (RNN)
based encoder was proposed which resulted in more efficient solutions to the VRPs (James J., et al.
2019). With respect to graphic representations, an improved DRL incorporated with graph embedding
network was given to solve the VRPs problem (Luis et al., 2019). In this model, VRPs were regarded
as the route decoder process, and chose action in terms of the output of the graph embedding network.
Moreover, a multi-agent attention model to solve the multiple vehicle routing problem with time
windows was proposed (Zhang et al., 2020), which could achieve superior performance to several
classical heuristic baselines with negligible calculating time.

Even though the proposed approaches have demonstrated superior performance to conventional
methods in solving VRPs, most studies tend to focus on addressing straightforward routing issues that
are essentially linear programming problems. Nevertheless, the MDVRPTW with various constraints
is more challenging to solve. These constraints add complexity to the problem, making MDVRPTW
more challenging to solve than traditional VRPs.

(1) 	 The quality of heuristic methods is often determined by the quality of the groupings, and devising
grouping rules requires a substantial amount of expert domain knowledge, making it difficult to
achieve optimal results.

(2) 	 Current research on DRL methods in combinatorial optimization problems mainly focuses on
using a single agent to interact with the environment to solve problems like TSP and VRPs, while
research on solving MDVRPTW is relatively lacking.

(3) 	 Compared with single depot vehicle routing problems, the search efficiency of reinforcement
learning will be compromised greatly for larger solution space of MDVRP. Furthermore, the
decoder framework fixes the order of vehicles in transformer structure, which leads to the
restrictions during the exploration of agents and is no longer effective to handle vehicles originated
from different depots.

This paper proposed a multi-agent deep reinforcement learning with local search strategy
(MADRLL) for MDVRPTW, which considers constraints such as multiple depots, multiple
vehicles, and time windows. Then, a multi-head attention strategy was proposed to mine the
complex spatiotemporal correlation encoder model within the time window, and a decoder with
multi-agent was designed to generate solutions by optimizing rewards and observing transition

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

3

states. Meanwhile, a local search strategy to improve the quality of the solution was adopted to
enhance overall performance.

The remainder of the paper is structured as follows. Related works are discussed in Section 2,
and problems definition and mathematical modeling are presented in Section 3. Section 4 provides
the description of the proposed algorithm. Section 5 presents the experiment results and analysis,
and the paper is concluded in Section 6.

RELATED WORK

The solution strategies for VRPs mainly focus on heuristic methods. Although exact algorithms can
obtain the optimal solutions, it was difficult to find the result in a reasonable time with the increases
of problem scale and the computational complexity. VRPs can be solved by heuristic strategies by
designing hand-crafted features with expert knowledge. The local search strategies were an important
category of heuristic algorithms which can improve the solution quality. There were varieties of
heuristic methods derived including simulated annealing (Hiermann et al., 2022), estimation of
distribution algorithm (Wang, Li, & Guan, 2023) and tabu search (Gu et al., 2023). Local search
strategies have been adopted in solving VRP, in which the search procedure stopped when the
improvement of solutions in the neighborhood space were taking place again, while a premature
convergence might be taking place (Stodola & Nohel, 2023).

Reinforcement learning was used to search the best solutions by maximizing accumulated rewards
which were suitable for decision-making. The iterative process of RL to select a node is modeled
as the following Markov Decision Process (MDP). (1) The agent chooses an action 𝐴𝑡 according to
the strategy 𝜋 in the current state 𝑆𝑡. (2) The state 𝑆𝑡 of the environment was transferred to the next
state 𝑆𝑡+1 according to 𝐴𝑡. (3) The agent obtained the feedback reward 𝑅𝑡 by the environment and
chooses the next action 𝐴𝑡+1 according to strategy 𝜋. Common RL solves the decision strategy by
iterating the Bellman equation, usually, however, the model was too costly. RL can be applied to
sequence decision by a reward feedback strategy without requirement of labeled data. The difficulty
of data annotation in the network and the network transmission performance used as natural decision
feedback make DRL suitable for routing decisions.

With the increasing popularity of artificial intelligence, the research of DRL for VRPs was
studied. DRL could be applied to automatically generate the road trajectory for the rescue vehicle
in case of an emergency on the mountain freeway. A transformer-based architecture for the VRP
was proposed (Li et al., 2021), where both the encoder and decoder of the neural network use the
attention mechanism, significantly improving the computational speed and solution quality. In
addition, DRL was used solve more complex VRPs, e.g., the heterogeneous capacitated vehicle
routing problem, and the pairing and precedence relationships in the pickup and delivery problem
(Lin et al., 2021). An end-to-end deep reinforcement learning framework to solve the EV routing
problem with time windows (Ren et al., 2022), while the uncertain demands of customers in the
VRP using DRL was addressed (Pan et al., 2023), resulting in efficient computation. A summary
of this part of the study reveals that the existing studies did not consider the difference between
the time window dimension and the logistics delivery time dimension. Therefore, the lack of
variation between the two dimensions does not further exploit the potential for improving the
solution quality.

It can be found that the existing research lacks the flexibility to search between different
dimensions in the search space and knowledge exchange between agents, which inhibits further
improvement of the algorithms. The multi-agent reinforcement learning framework can enhance the
solution quality to some extent.

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

4

PROBLEMS DEFINITION AND MATHEMATICAL MODELING

MDVRPTW

There are many branching variants of VRPs as the focus of in-depth studies, which have gradually
expanded and extended into various real-life scenarios (Li et al., 2023). The fixed number of vehicles
in the fleet and tighter time windows for customer demand have transformed traditional VRPs into
VRPTW. Considering that vehicles depart from multiple depots, VRPTW was transformed into
MDVRPTW which has more applications in real life by assigning limited vehicles with several trips
for meeting the demands at the specified time. The appropriate penalties were incorporated into the
reward to ensure the vehicle can satisfy the customer’s demand within the time window. There were
three depots {v1, v2, v3} and 15 customers {v4, v5, …, v18} used to demonstrate the MDVRPTW
clearly in Fig. 1.

MDVRPTW involves multiple depots for delivering goods to multiple customers, and every depot
is assigned a certain number of vehicles. The maximum capacity of each vehicle and the coordinate
of every depot were known. The demand volume and location coordinates are known for every
customer point, and every customer node has a specific time window and demand to be met. Vehicles
need to satisfy customer demands within specified time windows. Customer demand quantities are
fixed and come with time window requirements. The goal is to minimize the total route length by
optimizing vehicle routes to satisfy customer requirements and time window constraints. There are
a set of vehicles with capacity Q starts from multiple depots to serve all customer requests under its
soft time windows. The assumptions are made for this problem as following:

(1) 	 All vehicles are the same type, and their maximum capacities are identical.
(2) 	 Each customer is serviced by exactly one depot.

Figure 1. An overview of the problem scenario

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

5

(3) 	 The demand quantity of every customer is less than the maximum capacity of every vehicle. The
time window of each customer is unambiguous. The penalties must be paid if the vehicle does
not arrive during the time window.

(4) 	 The coordinate of every depot and every customer is known clearly. The depot of departure and
return of each vehicle is the same.

(5) 	 There are no transportation routes between depots.

Mathematical Modelling
This paper focuses on solving any random instance which is the symmetric two-dimensional Euclidean
MDVRPTW and formulated as an undirected graph 𝐺=(𝑉, 𝐸) where there are nodes including depots
and customers. In the graph, V = Dep∪Cus={v1,..., vD} ∪{vD+1,…, vD+N}. Here Dep = {v1,...,
vD} and Cus = {vD+1,…, vD+N} represents a set of depots and customers respectively, and 𝐸 ={𝑒ij
| D+1≤i≤D+N, D+1≤ j≤D+N} denotes a set of edges, 𝑒ij= dis(i, j) means distance between node v𝑖
and vj. A node vi is associated with a list X x y e l qi i i i i i i

e
i
l= (), , , , , ,β β where x yi i,() represent the

coordinate of node vi, e li i,

 represent the time window from ei to li, qi is the demand of customer

i, and b bi
e

i
l, represent early punishment coefficient and late punishment coefficient, respectively. The

customer’s demand will be produced by sampling randomly in this paper. For those nodes Dep =
{v1,..., vD}, the demand of each depot is set to 0 and time window of each depot is set to [0, T] allowing
that the depots do not require any demand and it can be accessed by vehicles at any time.

Table 1 summarizes the notations adopted to define the problem. Given π as the solution sequence,
the goal is to minimize the total routing length τ.

MDVRPTW allows some flexibility in the arrival time compared to customer service times.
However, penalties are imposed for arriving late or early, and these penalties are added to the reward
to encourage vehicles to meet customer demands within the specified time windows. The set of
vehicles is {Md | ∀d∈Dep}, Md is the set of vehicles in depot d. Considering every vehicle is dedicated

to a unique route, a total number of M (that is
m

D

mv=∑ 1
) routes will be generated, and they only

connect to each other at the depot. The max capacity of each vehicle is Q and the residual capacity
of the mth vehicle at timestamp t is q̂m

t . The cost is measured by Euclidean distances in the plane,
and the speeds of all vehicles are assumed to be identical. Dis(i, j) = SQRT((xi − xj)

2 + (yi − yj)
2),

∀i∈V, ∀j∈V). An element of time-variant ηi is the system time at decoding step t for vehicle i, which
is set to 0 as initial value. The optimization solution is to find the optimal permutation 𝜋 = (𝜋1,…,
𝜋𝑛) with minimal total travel cost of all vehicles τsum(π1..M) and total punishment for violating
constraints psum(π1..M) of time window, which were defined as Eqs. (1) and (2). The elements 𝜋𝑡 ∈
𝑉 in permutation 𝜋 selected at each time step 𝑡 ∈ {1,…, 𝑛} are the orders of those nodes in the graph.
Feasible permutation 𝜋 must satisfy two conditions: (1) each customer is served exactly once; (2) all
customers can only be served once, 𝜋𝑡 ≠ 𝜋𝑡′, ∀𝑡 ≠ 𝑡′.

τ π π π π π
π

sum M m m mdis i i dis
m

1
1

1

1
..

| |

([], []) ([|() = + +
=

−

∑ d, d,

i

d,

d,

dd, d,m m
m

M

d

D d

|], [])π 0
11











==
∑∑ 	 (1)

p e lsum M
e

i i i
l

i iπ β η β η
π

1
1

0 0
..

|

max{(), } max{(), }() = − + −





=
i

i

dd,md

m

M

d

D |−

==
∑∑∑

1

11

	 (2)

where dis(·,·) is the Euclidean distances in the plane, τd,m[t] means the customer served by the
mth vehicle started out from dth depot at timestamp t. The early punishment coefficient βi

e < 0 and
late punishment coefficient βi

l < 0 .

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

6

Algorithm Description
The framework of the proposed methodology can be described as Fig. 2 which produces the routes
as a series of consecutive actions by the architecture composed of inputs, an encoder, and a decoder
comprising multiple agent networks. In this architecture, the main objective of using the encoder is to
understand the information of depots and customers through creating a high-dimensional representation
by extracting spatial-temporal information within the time window network. The representation will
be forwarded to the decoder to generate a sequence of its own that represents the output.

Parameterized stochastic policies are used at every time step t, and actions are selected based on
the probability vector output by the policy network until the end state is reached (i.e., all customer
points have been visited). The final output of the policy is a complete node selection sequence, denoted
as π= {π1, π2, …πT}, where T is the length of the selected node sequence. According to the chain rule,
given an instance s, a stochastic policy p(π|s) was parameterized by θ for selecting a solution π1..M
as shown in Eq. (3).

P s p st t t
t

T

π π πθ| | ,() = ()− −
=
∏ 1 1
1

	 (3)

Table 1. The variable and parameter definitions of the MDVRPTW model

Variable Description

V={v0, v1, …_} Node set

D Number of Depots

vj Node of Depot j, j={1, …, D}

vi Node of customer i, i={D+1,…, D+N}

n Number of customers

E={(vi, vj)| i ≠ j} Edge set

(xi, yi) Vector representing coordinate of node vi

[ei, li] Time window from ei to li

Q max capacity of each vehicle

q̂m
t

The residual capacity of the mth vehicle at timestamp t

qi demand of customer i

T the whole-time interval

dis(i,j) distance between vi and vj

π solution sequence

ηi the system time of the vehicle i

τ total routing length

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

7

where T denotes the step, pθ(πt|st-1, πt−1) indicates the probability of selecting customer at step t.
θ represents parameters to be learned.

Encoder Architecture
The encoder embeds the raw features of a problem instance (i.e., customer location, customer demand,
and vehicle capacity) into a higher-dimensional space, and then processes them through attention
layers for better feature extraction. The encoder is composed of an embedding layer and N attention
modules with identical structures but independently parameterized. Each attention module consists
of a multi-head attention layer (MHA) and a feed-forward layer (FF). The input to these modules is
the feature of every node, and the output is a higher-level feature representation of every node and
the overall graph feature information.

Step 1: Embedding Layer. The embedding layer takes the features of depots and customer points
as inputs, where X={Xi|∀i∈V}, and X x y e l qi i i i i i i

e
i
l= (), , , , , ,β β . Where x yi i, represent the coordinates

of the node in a 2D plane, ei and li represent the time window, and qi is the demand of customer i.
The demand of depot is set to 0. The embedding layer maps every input Xi to a node embedding
feature hi

0 (with feature dimension dim(hi
0) = 128), as shown in Eq. (4).

h W X bi
X

i
X0 = × + i∈{1,..., D, D+1,…, D+N}	 (4)

where WX and bX represents the learnable parameters of embedded layer.
Step 2: Attention Modules. The initial input to every attention module is the embedding feature

h0. Each module consists of MHA and FF layers, which both use residual connections and batch-
normalization. The attention module updates the node features from the previous layer, hl-1 to hl,
where l∈ [1,N], representing the l-th attention module, as shown in Eqs. (5) and (6).

Figure 2. Framework of DRL algorithm

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

8

h BatchNorm h MHA
l

l l l = +()− −1 1 	 (5)

h BatchNorm h FF hl l
l

l
l

= +










 () 	 (6)

Step 2.1: Multi-Head Attention Layer. Attention mechanism is to learn a probability distribution
that can essentially be described as the process of mapping a query vector, key vector, and value vector
to an output vector by connecting with context. The output vector is the weighted sum of values,
which can be calculated according to Eq. (7).

Attention SoftMax QK

d
VQ K V

T

k

(, ,)
()= 	 (7)

Multi Head Attention (MHA) is a variant integrated multiple head of attention mechanisms. Each
head can learn different information from different representation spaces, which will contribute to
capturing the dependency between input and output.

By calculating the attention distribution, the degree of attention to a certain input can be obtained.
There are three matrices Q, K and V calculated by multiplying the input vector H with WQ, WK, and
WV which are three weight matrices by initializing randomly. In this work, attention heads M = 8
was adopted to compute attention in 8 different sub-spaces, every with dimensions of dim(h) / M =
16. It can be calculated as Eqs. (8)-(10).

q W hm m
Q l= × −1 	 (8)

k W hm m
k l= × −1 	 (9)

v W hm m
v l= × −1 	 (10)

Where qm, km and vm are query, key, and value for the m-th dimension space, and Wm
Q , Wm

K , Wm
v

are the corresponding network parameters.
To account for specific characteristics of MDVRPTW, the definition of node neighbors is revised.

If a node is a depot, its neighboring nodes correspond to all customer points. If a node is a customer,
its neighboring nodes include all nodes. In every attention head’s dimension space, the scaled dot-
product value uij

m between qi,m and kj,m is calculated. It is then normalized using the SoftMax function
to obtain the attention score uij

m ∈ [0,1]. The attention score ai
m
*

 is used to compute the dot product
with the corresponding vi,m, resulting in feature sub-space for every attention head. Finally, all feature
sub-spaces from different attention heads are merged to form a complete node feature. It can be
calculated as Eqs. (11) and (12).

u

q k

k
j adjacent to i

ij
m

i m
T

j m

j m
=

×

−∞

, ,

,
dim()

,

,

 otherwise.











	 (11)

a SoftMax u e

e
ij
m

ij
m

u

u

j

ij
m

ij
m

= =
′

′∑
() 	 (12)

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

9

The attention score uij
m computes based on a scaling mechanism. Due to the large scalar results

generated by inner product operation, the SoftMax function falls into the saturation region with a
small gradient that may occur gradient dispersion during the training process. The output of the
attention mechanism can be obtained by weighting evaluation with value as Eq. (13).

′ = ×
′∑h a vi m ij
m

j
m

j,
	 (13)

Then the output of multi-head attention will be concatenated by attention outputs from M
subspaces, which can be calculated as Eq. (14).

MHA h W hi m
O

m

M

i m()
,

= × ′
=∑ 1

	 (14)

Where Wm
O is feature fusion of network parameters for multi-head attention.

Step 2.2. Feed-Forward Layers. The feed-forward layer consists of two linear fully connected
layers, and ReLU activation is applied to the neurons, as shown in Eq. (15).

FF h W LU W h b bi
F F

i
F F() Re () = × × + +

2 1 1 2
	 (15)

where ReLu(x) = max(x,0), W F
1

, bF
1

 are the parameters for the first fully connected layer, and

W F
2

, bF
2

 are the parameters for the second fully connected layer. hi
1() indicates an output of one

attention module. The final customer embedding hi
λ() for every customer i∈{1, 2, …, N} can be

obtained after l attention modules.
In the circumstances with multiply depot, each vehicle was required to return to the depot where

the vehicle starts from. The information for all customers and depot j is indicated by an aggregated
embedding shown in Eq. (16).

h
N D

h hj
N

j i D

D N

i
() ()

= +

+ ()=
+

+






∑

1
1

λ λ 	 (16)

Decoder Architecture
Definition of Basic Elements for MDP
A Markov decision process can be constructed for MDVRPTW. The related elements contained agents,
state space, actions, state transitions, and reward function and can also be designed to formulate a
multi-agent reinforcement learning framework.

(1) 	 Agents. Vehicles were regarded as agents which used to observe the environment and the states
of other agents. Each agent selects an action based on the perceived information and influences
the states at time step t.

(2) 	 States. The state at step t contained two parts such as the agent state and environment state. state
S = {Sg, Sa} contains a global state Sg representing the static state, which is the overall graph
feature information output by the encoder, and the agent state Sa = { Sa,1, Sa,2, …, Sa,M} consisting
of the states of all agents. The state of an individual agent m belongs to the dynamic state Sa,m,t

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

10

= { hm
N

t,π −

()
1
, q̂m

t } changing over time. Here, hm
N

t,π −

()
1
 represents the node features chosen by agent

m in the previous step. The residual capacity for vehicle m will be updated as q̂ q qm
t

m
t

i= −−1
after serving customer i. The environmental state mainly contains the information of those
unvisited customers.

(3) 	 Actions. The action space in multi-agent reinforcement learning consists of the joint action space
At = { Am

t } for all agents, where m= 1,2…., M. The action Am
t for agent m at the current time

step t represents the choice of the node to be served by that agent, including unvisited customer
points and the corresponding distribution center for that agent.

(4) 	 State Transitions. After time step t, when agent m selects action Am
t , the agent’s state transitions

to S S Aa m
t

a m
t

m
t

, ,
= { }−1 , where “” indicates the addition of the selected node from the action to

the current state, continuing until the complete joint action At is formed and the complete state
transitions from St-1 to St.

(5) 	 Rewards. Designing a well-structured reward function is crucial for training agents. The objective
is not just to maximize a single immediate reward but to maximize the long-term cumulative
reward. The reward function is defined based on the sequence π1..M of M customer nodes decoded
by the decoder. For the Vehicle Routing Problem with Time Windows (VRPTW), the goal is
to minimize the route cost. Therefore, the term τsum(π1..M) is added to the reward function to
encourage shorter distances, as larger rewards are associated with shorter distances. For MDVRP,
the objective function is to minimize both the total distance cost and the time cost. A smaller
total cost results in higher cumulative rewards for the agents. Therefore, the negative of the total
cost is used as the cumulative reward, which was defined as Eq. (17).

R=γτsum(π1..M) + psum(π1..M)	 (17)

In contrast to supervised learning, where model parameters are optimized based on the difference
between labels and predictions, the reward function serves as a guide for updating the reinforcement
learning policy network and value network. Reinforcement learning agents continually iterate to
maximize the expected total future return based on these reward signals. The reward signal is designed
to consider both total logistics delivery time cost and waiting time cost, where γ < 0.

Decoding Strategy

Contextual information St-1 = {Sg, Sa
t-1 } from both the encoder and the feature embedding module at

every step were applied to decode to obtain a probability vector for selecting every customer. The
specific network structure of the decoder consists of multiple agent networks and every agent network
consists of an embedding layer, a masked multi-head attention layer and a single-head attention layer.
For the scenario with multiple depots, it is necessary for each vehicle to return to the depot that it is
originating from. A matching strategy takes the choice of both vehicles and customers into account,
which allows larger exploration space for the vehicles belonging to different depots. During the course
of the decoder, the agent and customer may be chosen based on the state information of each vehicle
and the customer embedding.

Step 1. Embedding Layer. The embedding layer maps the state feature hm
c of the agent m to the

context-aware vector q̂m
c where hm

c includes overall graph feature information hL , current agent

features { hm
N d

t,

,

π

() , q̂m
t }, and the features { hi

N o

t,

,

π

() , q̂i
t } of other agents. To commence decoding, the

decoder must obtain contextual information including the graph embedding, the embedding of the
preceding node, and the feature embedding. The main task of the feature embedding is to aggregate

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

11

customers information, information of current agents, and information of the other agents, which can
be computed as Eq. (18).

h concatm
c = h h q h qL

m
N d

m
t

i
N o

i
t

t t
, , ˆ , , ˆ

,

,

,

,

π π− −

() (){ }()
1 1

m Î 1 2, , , , M{ } i M= 1 2, , , i m≠() 	 (18)

Where d represents the start depot d of vehicle m and o represent the start depot o of the other
vehicle i, in which d and o are the same depot if they depart from the same depot.

Step 2: Masked Multi-Head Attention Layer. The MHA in the decoder is slightly different from
that in the encoder, in which those customers have been traveled will be hid (set to -∞) before the
softMax operation is carried out. The argument query in MHA can be obtained by calculating from
the context-aware vector q̂m

c in the embedding layer in the decoder, which can be calculated as Eq.
(19). The argument’s key and value in MHA can be produced by calculating the eigenvalue of node
from the output of encoder, which can be calculated as Eqs. (20) and (21).

q̂ W h bm
c C

m
c c= × + 	 (19)

ˆ ˆ
, ,

k W hm i m i
K N= × 	 (20)

ˆ ˆ
, ,

v W hm i m i
V N= × 	 (21)

Where WC and bC are the network parameters of the decoder embedding layer. ˆ ˆ,��
, ,

W Wm i
K

m i
V are the

network parameters for computing the key and value respectively, i = 1,2,…,I is the dimensional
space for every attention head, and m represents current agent.

Then the scaled dot product vector ˆ
, ,

um j d
t between query and key can be calculated as Eq. (22).

To satisfy the problem’s constraints, a masking mechanism in MHA is applied to mask nodes (set
ˆ
, ,

um j d
t to −∞) if any one of the following conditions is not satisfied. (i) The node j is a neighboring

node of the current agent corresponding to the depot d. (ii) The node is unvisited. (iii) The demand
of the node j is smaller than the remaining capacity of the current agent corresponding to the vehicle.

u
C

q k

km j d

t m

c
T

m j d

m j d



 

, ,

, ,

, ,

tanh
()

dim()=
×

×











() ()

−∞

, -

,

under conditions i iii

 otherwise.











	 (22)

where C means to clip the compatibility within interval. C∈[−10, 10], m, j and d represent the
current agent, the customers, and original depot, respectively.

Then the normalized attention score ˆ
,

am i can be acquired using the SoftMax function as shown
in Eq. (23), and the aggregation of the MHA can obtain the latest context-sensitive vectors qm

c as
Eqs. (23) and (24).

ˆ ˆ
, , , ,

ˆ

ˆ

, ,

, ,
αm j i m j i

u

j

uSoftMax u e
e

m j i

m j i
= () =

′∑
′

	 (23)

ˆ ˆ ˆ
, , , , ,

q vm i
c

j
m j i m j i= ×∑α 	 (24)

q W qm
c

i

I

m i
O

m i
c= ×

=∑ 1 , ,
ˆ 	 (25)

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

12

Where Wm i
O
,

 represents the network parameters aggregated by the feature of multi-head attention
in decoders.

Step 3. Single-Head Attention Layer. The action probability vector for node selection can be
produced by a single-head attention layer in decoder. The compatibility um j, between query and key
in the single-head attention layer can be obtained as Eq. (26). The query can be calculated from the
context-dependent vector qm

c from the multi-head attention layer and the key can be calculated
according to equation k W hm j m

K
j
N

,
= × .

u
C

q k

k
under

m j

m
c T

m j

m j,

,

,

tanh
()

dim()
,

=
×

×










 cconditions i iii

ot

() ()

−∞

-

, hherwise.











	 (26)

The selection probability pm,j for every node is obtained by normalization by SoftMax function as
Eq. (27). Action selection for every agent is based on the probabilities provided by the attention layer.

p SoftMax u e
em j m j

u

j

u
m j

m j, ,

,

,
= () =

′∑
′

	 (27)

Where p
e e

e em j

x x

x x,
=

−()
+()

−

−
 is the hyperbolic tangent activation function. C means to

clip the compatibility within interval. C∈[−10, 10], m and j represent the current agent and the
customers, respectively.

The entire decoding process, involving the action selection and policy, is iteratively executed.
According to the probability vector pm outputted by each agent, the action selection policy selects
the next action Am

t , of that intelligence, and obtains the joint action A A A At t t
M
t= …{ }1 2

, , , , until all

the customers have visited and forms the complete policy solution π π π π= …{ }1 2
, , , T .

Policy Network Training Method
Given the high demand for labels in policy network training, here the REINFORCE algorithm has
been employed with a rollout baseline (Williams, 1992) as a basic architecture to train a multi-agent
joint policy network model. This is done by estimating the policy gradient of the joint policy using
cumulative returns and training the multi-agent policy network. For a given instance s, the policy
network θ outputs action probability vectors for every step of all agents, denoted as pθ(πt|s). It then
samples the joint policy πt=sample(pθ(π|s) using these probabilities. The baseline network θbl, on the
other hand, outputs action probability vectors p sbl tθ

π(|) and selects the joint policy

π π
θt

bl
tgreedy p sbl= ()()| . The expected cumulative reward L s E R

p s
θ π

θ
|() = ()



() of the policy is

evaluated using the Monte Carlo algorithm, where R(π) represents the cumulative return of the policy
π={π1, π2,…,πT}. The policy gradient is calculated using the REINFORCE algorithm with a baseline
and policy network parameters are updated using gradient descent as shown in Eqs. (28) and (29).

∇ () = − ()− ()




×∇

⋅()θ π θ θθ π π π
θ

L s E R R p
p s M M

bl
M|

|~
log

1 1 1
||s() 	 (28)

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

13

� ,θ θ θθ= ∇ ()()Adam L s| 	 (29)

where R M
blπ
1..() means the reward.

The variance of the gradient of training the network can be reduced effectively by evaluating
instance s using the baseline network θbl. The baseline network is updated in a rolling manner. The
parameters θbl of the baseline network will be replaced by parameter θ if the improvement is significant
based on the experimental verification by paired t-test with a significance level of α (= 0.05) in the
training of each epoch (Kingma, D. P & Ba, J. L., 2015). The framework of the policy gradient is
demonstrated in Algorithm 1.

The policy gradient algorithm for policy training is depicted in Algorithm 1 which consists of
the policy network and baseline network. The policy network generates a probability vector at each
step and selects an action by sampling. In contrast, the baseline network shares the same structure
as the policy network but chooses the action with the highest probability based on greedy policy.
The gradient of the loss function is provided in Eq. (28). In each epoch, the parameters of the policy
network are updated according to the gradient. At the same time, a t-test is performed on the current
model. When the reward of the policy network is significantly better than that of the baseline network,

Algorithm 1. Policy gradient algorithm

Input:

Output
1)
2)
3)
4)
5)
6)
7)

8)

9)

10)

11)
12)
13)
14)

15)

16)

17)

18)

19)

20)
21)

22)

23)
24)

Initialization: Training instances set I; number of epochs MAXE; batch size B; number of batches
MAXB=|I|/B; significance level δ; number of agents M; maximum decoding length T; Initial parameters θ for
policy network πθ; baseline policy network with trainable parameters θb for policy network πb.
trained parameter set θ
Initialize θ, θb

for epoch = 1, 2, …, MAXE do:
for batch = 1, 2, …, MAXB do:
si ← Sampleinput(I), Ɐi∈{1,2,…,B}
{ A1, A2,…, AM} ← Selectstartdepots(D)
Initialize the start time ηm and state Sm for all agents, Ɐm∈{1,2,…,M}
for t= 1, 2, …, T do:

 q̂m
c = concat(hL , hm

N

t,π −

()
1

, q̂m
t , { hm

N

t,π −

()
1

, q̂m
t }) for each agent

π π π πθi i t 1: t-1
s

1,..., | ,M m
i

mp{ } ← () , Ɐ ∈{1,2,…,B}, Ɐm∈{1,2,…,M}

π π π π
θi i t 1: t-1

s
b b M m

i
mp b

, ,,..., | ,1{ } ← () , Ɐi∈{1,2,…,B}, Ɐm∈{1,2,…,M}

Observe reward { r r rt t t
M1 2, , ,¼ } and next state st+1;

end for
if batch%5==0 then
π* ←LS(πi);

b R Rb m() min , *
s

i
= (){ }∪ (){ }π π , Ɐi∈{1,2,…B}, Ɐm∈{1,2,…,M}}

 else

b R b m() min ,
s

i
= (){ }π , Ɐi∈{1,2,…B}, Ɐm∈{1,2,…,M}}

end if

Compute ∇ ()θ θL s| according to Eq. (28).
Update θ according to Eq. (29).
end for

if Paired t test p p thenb - ,θ θ
δ() <

θb ← θ
end if
end for

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

14

the parameters of the baseline network are replaced with those of the policy network. Algorithm 2,
a local search strategy, is applied. It will be conducted every few iterations so as to overcome the
extraordinary waste of computing time in the process of local search.

Action Selection and Local Search Strategy
Action Selection Strategy
The policy network, after multiple rounds of learning, possesses good decision-making capabilities.
The decision-making activities were carried out based on the probability vectors output by the
network. A sampling strategy was applied in this paper based on the decoder’s output probabilities
as a sampling probability distribution. Therefore, this strategy does not always choose the action with
the highest probability but selects actions with different probabilities.

During model training, the baseline network θbl acts as an evaluator for the difficulty of each batch
of training instances. Using a greedy action selection strategy quickly obtains an effective “evaluation
metric.” The policy network θ, acting as the “actor,” needs effective evaluation of its decision-making
ability. The sampling action selection strategy effectively estimates the expected value of solution
quality, representing the actor’s decision-making ability. By having θbl and θ choose suitable actions
using different strategies, the learning efficiency and model performance can be improved.

For all nodes i at each decoding step t, the probabilities pi
t can be estimated and the agent can

decode solutions for an MDVRPTW instance. Particularly, there are three decoding strategies as
follows.

(1) 	 Greedy Decoding: The customer with the highest probability at each step t was selected greedily
as the next node, i.e. next node j argmax pi

t= { } .
(2) 	 Stochastic Sampling: The next node to visit according to the probability distribution described

by pi
t was sampled for all i, at each decoding step t.

The time complexity of greedy decoding was the lowest among these strategies, while the poor
solutions may be generated because of its myopic nature and the lack of exploration in the solution
space. So, a stochastic sampling strategy was applied to the train model.

Local Search Strategy
The trained MADRLL can quickly solve the MDVRPTW using a greedy action selection strategy.
However, there are some requirements to improve for some challenging instances, such as issues
with route crossings in sub-routes and overconfident behavior in greedy action selection. To improve
solution quality, this paper proposes an improved local search strategy according to the characteristics
of MDVRPTW. Due to the advantage of fast a solution, repeated sampling of the model is not very
costly. The framework of local search strategy was demonstrated in Algorithm 2.

The local search strategy optimizes each sub-route and sample search to avoid over-confident
behaviors of the policy network. The main idea of the proposed strategy is to randomly swap two
customers of a given sub-route to generate a new one so that its cumulative reward is shorter than
that of the original route. Given an original route {…, ci, ci + 1, …, cj, cj + 1, …}, a new route {…, ci, cj,
…, ci + 1, cj + 1, …} can be obtained by swapping the positions of customers cj and ci + 1 and the shorter
route will be formed. In this strategy, the operation takes place for each sub-route Sk in possible
solution set S. There are two integer i ∉ (0, len(Sk-1)) and j ∉ (0, len(Sk-1)) sampled randomly in
condition |j-(i+1)| ≥ 2. Two edges (ci, ci + 1) and (cj, cj + 1) are recombined into new edges (ci, cj) and
cost (ci + 1, cj + 1). The original edges will be removed, and the new edges will be generated if the cost
of two new edges is smaller than original edges. To overcome the extraordinary waste of computing
time in the proposed strategy, it will be conducted every few iterations. Given that there must be

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

15

some solutions with relatively poor quality after each iteration, only a small portion (20%) of the
optimal routes will be selected randomly to implement the operation. The poor routes are replaced
with the optimized routes.

EXPERIMENTAL RESULTS AND ANALYSIS

To test the performance of the proposed algorithm, a series of experiments were implemented. The
overall framework of MADRLL is implemented under Pytorch environment. The training policy
network model were executed on a RTX 2080Ti GPU, and the arithmetic cases were tested on an
Intel Core i7 CPU/3.60 GHz with win10 operating system.

Experiment Settings
The proposed method was evaluated on cases generating 50 customers and 100 customers with 3
depots separately, which were denoted by “c503d” and “c1003d.” The time window for every customer
was randomly generated for the cases “c503d” and “c1003d,” respectively from 0 minute to 15 minute
and from 0 minute to 30 minute. The early punishment coefficient bi

e was distributed from 0 to 0.5,
and late punishment coefficient bi

l distributed from 0 to 1 were randomly generated. The maximum
capacity of every vehicle is 100 and 300 for the cases, “c503d” and “c1003d,” respectively. The speed
of every vehicle was set as 60 km/h. The arithmetic cases for the test were generated by referring to
the reference (Ho et al., 2018), in which the coordinates of the customers were uniformly distributed
on the two-dimensional plane [0,10km] × [0,10km], and the demand of the customers were uniformly
distributed on [1,10].

There are some parameters that were set in the training phase and test phase for MADRLL. Each
vehicle was distributed on a different, original depot. In the model training phase, the training epoch,
batches per epoch, the number of instances per batch and the learning rate in Adam optimizer were
set to 150, 2500, 512 and 1×10-4 respectively for the cases with size c50d3 and c100d3. In the test
phase, the number of arithmetic cases were set to 10000 under the corresponding distributions of the
c50d3 and c100d3 problems. The performance indicators of the model were adopted with average
path length and average solving time. The shorter the average path length is; the better the strategy
is. Shorter time of average solution indicates a higher efficiency of the model.

Validation of the Multi-Agent Model
Different from single-agent reinforcement learning, MADRLL contains multiple agents, which not
only need to have accurate knowledge of the current environment, but also need to integrate the feature
information of the other agents to achieve the cooperation effect. The interaction among multiple

Algorithm 2. Local search strategy LS(S)

Input:
Output
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)

possible solution set S
route S*
for each sub-route Sk in S do: // Sk ={…, ci, ci + 1, …, cj, cj + 1, …}
for iter = 1,…, len(Sk)/5 do:
 i, j ←SampleInt(len(Sk-1)) ∧ (|j-(i+1)| ≥ 2);
 if cost(ci, cj) + cost (ci + 1, cj + 1) < cost(ci, ci + 1) + cost (cj, cj + 1) then
 (ci, ci + 1) ← (ci, cj), (cj, cj + 1) ← (ci + 1, cj + 1);
end if
end for
end for
S* ← S;
return S*;

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

16

agents in MADRLL is implemented through feature fusion in the embedding layer of the decoder,
which is operated according to Eq. (18). The state features of the current agent and the other agents
are fused in the current environment in the decoder. Thus, the joint optimal action is considered before
the current agent makes a decision to select a next node. In contrast, the current optimal action is
considered for the single-agent learning mode since there is feature information of the current agent
in the embedding layer of the decoder. To test the validity of the proposed model, experiments on
instances of sizes c50d3 and c100d3 with various numbers of agents were conducted. The parameter
of attention modules λ was set to 3, and the parameter of attention heads K were set to 8. The process
of the training cost curves for MADRLL was visualized in Fig. 3.

Viewing from Fig. 5, MADRLL with multiply agents could converge faster and better in the
training process than that one with single-agent learning mode. The best convergence was that the
algorithm with three agents on arithmetic cases c50d3 and c100d3 and the convergence speed and
results on c50d3 were better than c100d3, which indicated that the algorithm would be better with
the scale decrease. The algorithm could obtain obvious advantage when the number of agents is
close to the number of depots of instance while the worst performers were the single agent, and this
difference becomes more pronounced as the scale of the customer increases.

Performance Comparison With Other Algorithms
To verify the advantages of the proposed algorithm, the compared experiments were carried out
on instances c50d3 and c100d3, respectively. The comparison algorithms included a reinforcement
learning (RL), Google OR-Tools, a hybrid genetic algorithm (HGA2) and ant colony algorithm
(ACO). HGA2 was a genetic algorithm combined with neighborhood search and ISP operator, which
initialized population with NNH strategy. In the test, the population size was 30, crossover probability
was 0.4, variance probability was 0.2, and the number of iterations is 500 for c50d3 size problem
and 1000 for c100d3 size problem. The ACO was used with 50 ants, 10 best ants and 0.95 decay rate
of pheromone. The exponent of pheromone was set to 0.9 and the maximum number of generations
was set to 1000. The results of the comparison experiment were shown in Fig. 4.

Fig.4 illustrated the mean travel cost and mean execution time for every instance under the
algorithms contained HGA2, ACO, OR-Tools, RL and MADRLL. Compared with the HGA2,
ACO, OR-Tools and RL, MADRLL could achieve significant improvements in solving quality and
computational efficiency in various situations. To generate the suboptimal solutions for 100-customer
in ACO was difficult, while superior solutions could be generated by MADRLL with low cost online
calculating effort. MADRLL was effective with the changes of conditions, which is a distinct advantage
compared with some heuristic algorithms.

Robustness Tests
Generally, it was indispensable to deal with some uncertainties and variations environments for
the agency and the high executing time and resources would be required for training the model for
every case. It makes sense to research the robustness of MADRLL. After the model of MADRLL
was trained, it could be generalized to solve any similar scale problem. To validate the robustness
performance of the MADRLL model, different scale models contained varying customers and depots
were experimented with MADRLL, RL and OR-Tools. The illustrations of generalization ability of
the MDVRPTW comparing to other algorithms were shown in Table 2 and Table 3.

Viewing from Table 2, the superior performance of MADRLL demonstrated effectiveness to
the variations in numbers of depots and customers in the travel cost and executing time comparing
to OR-Tools and RL. With the changes of number of depots, the model that has been trained could
produce optimal solutions. MADRLL model pretrained for the case “c50d3v3” and “c50d3v4” to
solve optimal solutions under various conditions, and the results shown the proposed method still
outperforms other algorithms.

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

17

It could be seen from Table 3 that the travel cost and executing time were increasing with the
increment of customers for OR-Tools, RL and MADRLL in the case of a fixed number of depot and
vehicle. Compared to OR-Tools and RL, MADRLL had the lowest travel cost and executing time.
The executing time of MADRLL was relatively close to RL, while it was much faster than OR-Tools.
The proposed method was able to quickly solve MDVRPTW under conditions of varying numbers of

Figure 3. Performance comparison for various numbers of agents (a) Scale of c50d3, (b) Scale of c100d3

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

18

Table 2. Performance comparisons on scenarios with varying number of depots

Case OR-Tools RL MADRLL

Cost Time Cost Time Cost Time

c50d1v3 99.8163 11.8136 98.6375 1.0473 95.4251 0.8148

c50d2v3 97.4251 9.1255 94.4234 0.9432 89.4232 0.7861

c50d3v3 95.6362 7.4151 91.8182 0.8837 84.3164 0.7557

c50d1v4 101.2947 8.4578 103.6243 0.9114 97.6217 0.7970

c50d2v4 98.7263 7.7857 99.4218 0.8752 93.4242 0.8581

c50d3v4 97.5436 6.7216 94.4239 0.8561 88.4237 0.8253

Figure 4. Comparison of training result for different algorithms (a) Travel cost, (b) Executing time

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

19

customers and depots. It also could efficiently search for good routes even if the scale of customers
or depots was increased.

It is significant to explore how the proposed method performs for those vehicles with different
capacities. The initial vehicle capacity q̂m

t=0 was variable during the experiments. “c50d3v3q160”
indicates a case with 50 customers, 3 depots, and 3 vehicles with a capacity of 160. Table 4 recorded
the performance comparison on scenarios with uncertain vehicle capacity for algorithm OR-Tools,
RL and MADRLL, which showed that the proposed model had better generalization and scalability
compared to OR-Tools and RL.

Table 3. Performance comparisons on scenarios with varying number of customers

Case OR-Tools RL MADRLL

Cost Time Cost Time Cost Time

c50d3v3 95.63622 7.4151 91.8182 0.8837 84.3164 0.7557

c45d3v3 91.4271 6.5262 86.7217 0.8247 79.7265 0.6642

c40d3v3 85.6375 5.7346 82.5305 0.7363 74.3343 0.5614

c100d3v5 160.3927 37.2907 166.2946 1.7516 152.2917 1.7153

c95d3v5 153.4246 33.4253 160.4233 1.6705 146.4225 1.5921

c90d3v5 146.3203 27.4207 155.4617 1.6028 142.8648 1.5318

Table 4. Performance comparisons on scenarios with uncertain vehicle capacity

Case OR-Tools RL MADRLL

Cost Time Cost Time Cost Time

c50d3v3q100 102.4715 8.3286 98.2745 0.9252 91.2753 0.7904

c50d3v3q130 95.63622 7.4151 91.8182 0.8837 84.3164 0.7557

c50d3v3q160 98.5382 9.2972 94.5834 0.8558 87.5387 0.7416

c100d3v5q240 171.0586 28.4355 172.7647 1.5745 158.6468 1.5185

c100d3v5q270 160.3927 37.2907 166.2946 1.7516 152.2917 1.7153

c100d3v5q300 153.2479 27.0713 158.7451 2.1826 149.0688 1.8826

Table 5. Performance comparisons on scenarios with uncertain logistics delivery time

Case OR-Tools RL MADRLL

Cost Time Cost Time Cost Time

c50d3v3 95.63622 7.4151 91.8182 0.8837 84.3164 0.7557

c50d3v3±25% 99.2661 6.9133 94.1097 0.9075 91.3560 0.78624

c50d3v3±50% 108.7037 7.7255 102.5541 0.9467 98.1749 0.81527

c100d3v5 160.3927 37.2907 166.2946 1.7516 152.2917 1.7153

c100d3v5±25% 164.4665 36.2766 171.1625 1.9391 153.1453 1.8079

c100d3v5±50% 173.4963 37.8125 183.6756 2.4755 156.5741 1.9133

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

20

Due to possible traffic conditions during logistics delivery, such as quality of the route, driver
fatigue, severe weather, seasons, and multiple depot operations during weather disruptions, the
preset values in the experiment may deviate. To verify the robustness of the proposed method,
the fluctuation of logistics delivery time with ±25% or ±50% were considered. Table 5 showed
performance comparisons on scenarios with uncertain logistics delivery time for OR-Tools, RL and
MADRLL. It can be seen that the performance of MADRLL is better than the other algorithms,
although they could deal with different logistics delivery time fluctuations well. It indicated that the
proposed method has good generalization and scalability.

CONCLUSION

This paper presents a multi-agent deep reinforcement learning with local search strategy to solve the
MDVRPTW. The multi-head attention was used to extract important features from observations in
raw high-dimensional environment within time window network in encoder. A decoder architecture
with multiple agents was constructed to generate a policy to visit the customer at every step
successively. MADRLL could perform vehicle path planning for MDVRPTW on global optimizing
by learning mutual cooperative actions of multi-agent. By combining the local search strategy to
improve the quality of solutions, the speed and quality of offline training and search test by the
proposed algorithm could achieve good results. The experiments showed that the MADRLL could
obtain superior performance in terms of solution quality and robustness under varying numbers of
depots and customers comparing with the other algorithms. The next work will focus on a wider
range of optimal problems by extending the reinforcement learning model to facilitate real-world
applications. There is a need to explore the potential of learning-based methods for more complex
vehicle routing problems.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

FUNDING STATEMENT

This research was supported by the Characteristic Innovative Projects of Guangdong Ordinary
Colleges and Universities under Grant No. 2023KTSCX351. Higher education specialization
Project for Guangdong Education Science Planning under Grant No. 2023GXJK946 and No.
2023GXJK947, University Quality engineering and Teaching Reform Project under Grant No.
swjy23-004 and No. swjy23-002. School Scientific Foundation under Grander No. SKQD2021B-035
and No. SKQD2021Y-031. Higher education collaborative education Foundation of the Education
Ministry under Grander No. 202101347006 and No. 202101355031. Key Research Platform for
Ordinary Universities of the Education Department of the Guangdong Province under Grant No.
2022CJPT023.

AUTHOR CONTRIBUTIONS

Conceptualization, F.Y. and M.C.; algorithm design, F.Y.; mathematics modeling, F.Y. and
D.Z.; experiment and analysis, X.Y. and M.C.; writing—original draft, D.Z., writing—review
and editing, X.Y., F.Y. and M.C. All authors have read and agreed to the published version of
the manuscript.

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

21

AUTHOR NOTE

Fahong Yu: https://orcid.org/0000-0002-9342-6419.
Correspondence concerning this article should be addressed to Fahong Yu, Center of Intelligent

Computing and Security Research, Shanwei Institute of Technology, Guandong, 516600, China.
Email: fhyu520@whu.edu.cn; Meijia Chen, Shanwei Institute of Technology, Guandong, 516600,
China; Xiaoyun Xia, Jiaxing university, Zhejiang, 430010, China.

https://orcid.org/0000-0002-9342-6419

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

22

REFERENCES

Andelmin, J., & Bartolini, E. (2022). An exact algorithm for the green vehicle routing problem. Transplantation
Science, 51(4), 128–303.

Asaf L., Uri Y., (2013). Nonoblivious 2-Opt heuristics for the traveling salesman problem, International journal
Journal of Networks, 62 (3), 201-219.

Bono, G., Dibangoye, J. S., Simonin, O., Matignon, L., & Pereyron, F. (2023). Solving multi-agent routing
problems using deep attention mechanisms. IEEE Transactions on Intelligent Transportation Systems, 22(12),
7804–7813. doi:10.1109/TITS.2020.3009289

Braekers, K., & Nieuwenhuyse, K. I. (2020). The vehicle routing problem: State of the art classification and
review. Computers & Industrial Engineering, 99(7), 300–313.

Gu, Z., Zhu, Y., Wang, Y., Du, X., Guizani, M., & Tian, Z. (2023). Tian, Applying artificial bee colony algorithm to
the multidepot vehicle routing problem. Software, Practice & Experience, 52(3), 756–771. doi:10.1002/spe.2838

Hiermann, G., Puchinger, J., Ropke, S., & Hartl, R. F. (2022). The electric fleet size and mix vehicle routing
problem with time windows and recharging stations. European Journal of Operational Research, 252(3),
995–1018. doi:10.1016/j.ejor.2016.01.038

Ho, W., Ho, G., Ji, P., & Lau, H. C. W. (2018). A hybrid genetic algorithm for the multi-depot vehicle
routing problem [J]. Engineering Applications of Artificial Intelligence, 21(4), 548–557. doi:10.1016/j.
engappai.2007.06.001

James, J., Yu, W., & Gu, J. (2019). Online vehicle routing with neural combinatorial optimization and deep
reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 20(10), 306–317.

Kai, A., Marc, P., Miles, B., & Anil, A. (2017). Deep reinforcement learning: A brief survey. IEEE Signal
Processing Magazine, 34(6), 26–38. doi:10.1109/MSP.2017.2743240

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization[C]. The 3rd International
Conference on Learning Representations. San Diego, 2015: 1-11.

Li, J., Ma, Y., Gao, R., Cao, Z., Lim, A., & Song, W. (2021). Deep reinforcement learning for solving the
heterogeneous capacitated vehicle routing problem. IEEE Transactions on Cybernetics, 52(12), 572–585.
PMID:34554923

Li, Y., Soleimani, H., & Zohal, M. (2023). An improved ant colony optimization algorithm for the multi-depot
green vehicle routing problem with multiple objectives. Journal of Cleaner Production, 22(7), 1161–1172.

Lin, B., Ghaddar, B., & Nathwani, J. (2021). Deep reinforcement learning for the electric vehicle routing problem
with time windows. IEEE Transactions on Intelligent Transportation Systems, 23(8), 28–38.

Luis, G., Markus, L., & Mario, R. (2019). Layered graph approaches for combinatorial optimization problems.
Computers & Operations Research, 102(7), 22–38.

Macedo, R., Alves, C., Valério, C., Clautiaux, J. M., & Hanafi, S. (2022). Solving the vehicle routing problem with
time windows and multiple routes exactly using a pseudo-polynomial model. European Journal of Operational
Research, 214(3), 536–545. doi:10.1016/j.ejor.2011.04.037

Pan, W., & Liu, S. (2023). Deep reinforcement learning for the dynamic and uncertain vehicle routing problem.
Applied Intelligence, 53(1), 405–412. doi:10.1007/s10489-022-03456-w

Ren, L., Fan, X., Cui, J., Shen, Z., Lv, Y., & Xiong, G. (2022). A multi-agent reinforcement learning method with
route recorders for vehicle routing in supply chain management. IEEE Transactions on Intelligent Transportation
Systems, 23(9), 410–420. doi:10.1109/TITS.2022.3150151

Silva, M. L., Souza, S. D., Souza, M. F., & Bazzan, A. (2019). A reinforcement learning-based multi-agent
framework applied for solving routing and scheduling problems. Expert Systems with Applications, 131(10),
148–171. doi:10.1016/j.eswa.2019.04.056

Stodola, P., & Nohel, J. (2023). Adaptive ant colony optimization with node clustering for the multi-depot vehicle
routing problem. IEEE Transactions on Evolutionary Computation, 22(10), 277–291.

http://dx.doi.org/10.1109/TITS.2020.3009289
http://dx.doi.org/10.1002/spe.2838
http://dx.doi.org/10.1016/j.ejor.2016.01.038
http://dx.doi.org/10.1016/j.engappai.2007.06.001
http://dx.doi.org/10.1016/j.engappai.2007.06.001
http://dx.doi.org/10.1109/MSP.2017.2743240
http://www.ncbi.nlm.nih.gov/pubmed/34554923
http://dx.doi.org/10.1016/j.ejor.2011.04.037
http://dx.doi.org/10.1007/s10489-022-03456-w
http://dx.doi.org/10.1109/TITS.2022.3150151
http://dx.doi.org/10.1016/j.eswa.2019.04.056

International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

23

Wang, Y., Li, Q., & Guan, X. (2023). Collaborative multi-depot pickup and delivery vehicle routing problem
with split loads and time windows. Knowledge-Based Systems, 231(4), 174–189.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning, 8(3), 229–256. doi:10.1007/BF00992696

Zhang, K., Li, M., Zhang, Z., Lin, X., & He, F. (2020). Multi-vehicle routing problems with soft time windows: A
multi-agent reinforcement learning approach. Transportation Research Part C, Emerging Technologies, 121(11),
216–231. doi:10.1016/j.trc.2020.102861

http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.1016/j.trc.2020.102861

